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Abstract. Two distinct procedures have been followed in the literature for determining D, 
the self-diffusion coefficient for a dilute macromolecular solution. One is a direct statisti- 
cal mechanical calculation based on the fundamental Einstein relationship; the other 
consists of averaging the diagonal part of the diffusion tensor which describes the hydro- 
dynamic interactions. Subject to an approximation common to both types of calculation, 
that the macromolecules remain essentially fixed on the time scale of momentum relax- 
ation, we show that both procedures lead to identical results for D. Our result is valid for 
any order of approximation to the low-concentration hydrodynamic interaction term. We 
briefly argue that relaxing the fixed-particle approximation should not lead to appreciably 
different results. 

1. Introduction 

The calculation of the self-diffusion coefficient D for a dilute solution of uncharged 
spherical particles (the macromolecules) has been the subject of a number of papers; 
the work of Deutch and Oppenheim (1971, to be referred to as DO), Aguirre and 
Murphy (1973, to be referred to as AM), and Batchelor (1976) is particularly relevant 
for what follows. Our concern here is with the two seemingly distinct definitions of D 
that are used in these papers. DO calculate D directly from the fundamental Einstein 
relationship, written in terms of the momentum autocorrelation function 4 ( t ) ,  
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In the other work cited, D is identified as the average over the self-diffusion tensor, 
Dii. This definition of D has been used previously in the literature (Riseman and 
Kirkwood 1956) in the context of the theory of polymers, but we have found no 
rigorous justification for its use. The purpose of this paper is to demonstrate that, 
subject to an approximation common to the work cited above, these two definitions do 
give identical results for D. The results of DO are based on the use of the Oseen model 
for which Dii = Dol, with Do the value of D at infinite dilution; they found D = Do in 
accordance with the result obtained by simply averaging Dii. The results we will obtain 
here will be general, independent of the specific form of the low-concentration 
hydrodynamic interaction model. 

A number of approximations are used in the work cited above. The most impor- 
tant of these is that the particle locations can be considered as fixed for times over 
which D can be determined. This assumption is explicit in the work of DO and 

1905 



1906 S Ham's 

Batchelor and appears to be implicit in the work of AM. Another approximation 
common to all this work is the explicit neglect of effects due to the direct interaction 
between the particles other than in the averaging. We will not require the use of this 
approximation, nor the assumption of Batchelor concerning the Gaussian behaviour 
of the two-particle distribution function or the 'close to equilibrium' assumption of 
AM. As already mentioned, the correspondence we show between the two definitions 
of D will depend on the fixed-particle assumption; it is not presently clear whether 
this correspondence will strictly hold when this assumption is relaxed, but preliminary 
results for direct hard-sphere interactions indicate that the error involved is small. 

The method of approach which we will use here is based on the use of equation (1) 
and the calculation of the momentum autocorrelation function. Our results will also 
have a certain relevance for the theory of & ( t )  which we comment on only briefly here. 
To calculate 4 ( t )  we will use the generalised Fokker-Planck equation (GFPE) 
(Murphy and Aguirre 1972). The use of this equation offers several advantages, 
primary among which is the facility it offers in generating the desired results. Also, 
use of this equation offers an alternative approach to that given by the generalised 
Smoluchowski equation (GSE) which has been more widely used in previous appli- 
cations to the theory of macromolecular solutions (Altenberger and Deutch 1973, 
Harris 1976, Hess and Klein 1976). The latter equation is embedded in the GFPE and 
so we would expect a more complete description on the GFPE level. Whether this is 
accessible in toto, or at least beyond what can be done using the GSE, remains for 
future work to determine, but the present paper is a first step in this direction. 

2. Statistical mechanical theory 

The notation used in equation (1) will prove inadequate for what follows. To simplify 
matters we begin by noting that due to the isotropy of the system we can replace 
4 ( t ) / 3  by 4xx ( t )  where the superscripts indicate the components of the momenta 
whose correlation is being described. We will also have to take into account momen- 
tum correlations between different particles, so that &::(?) will be used to indicate an 
autocorrelation function and & rz( t )  to indicate a joint correlation function: 

The brackets indicate a full equilibrium ensemble average over all the particles in 
solution. We will also need to refer to momentum-averaged correlation functions, 
which we define in terms of an equilibrium ensemble average over only the momen- 
tum variables, denoted by (. . as 

+r(t) = (pozipxj (t)>p, (3) 
so that, if the configuration average indicated in equation (2) is denoted by (. . .)m, 

&l"(t> = (+?(tho. (4) 
In what follows the superscripts can be dropped, for ease of notation, without causing 
confusion. 

To calculate D from the fundamental Einstein relationship, equation (I), we 
require an expression for q511(?), or more simply Jl1(O), where the tilde denotes a 
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Laplace transform. In terms of the distribution function fl(rl,pl, t )  for a single 
particle in solution we have 

Differentiating equation ( 5 )  leads to an equation for I(lll(t) that contains 
afl(rl,pl, t)/at. The latter quantity can be obtained by reducing the GFPE, which 
describes the N-particle distribution function for the particles in solution since in 
general we have 

where rN,  pN denote the configuration and momenta of N particles and the differential 
notation is obvious. 

The GFPE is (Murphy and Aguirre 1973) 

with p = l/kT, Pi the direct force of interaction experienced by particle i, assumed to 
be the sum of pairwise additive terms, and Cij is the friction tensor. Reduction of the 
GFPE to an equation for f l  follows from equation (6), and we find 

Here we have used the low-concentration form for Sij, so that it too is written as the 
sum of pairwise additive terms, and we have written the diagonal part as &ll = 4'1"1 +fll 
with c:l = 1:11 the infinite-dilution friction tensor. 

In what follows we will have to close equation (8) in order to use this, with 
equation ( 5 )  to obtain a set of equations for the +ik The closure which we use is 
described in the following section and is based on the fixed-particle approximation 
discussed earlier. One point that might be noted here regarding equation (8) is that, 
unlike the reduced GSE, the direct force is not explicitly coupled with the friction 
tensor (Altenberger and Deutch 1973). Even in the context of the fixed-particle 
approximation we will see that this is illusory, and that this coupling does occur in the 
description of the +ik However, in arriving at equation (8) there is no need to consider 
(or drop) three-body terms as is the case with the GSE. A problem that might be 
anticipated in using equation (8) as the basis for a specific calculation is that the gii 
converge much slower than the Dij which appear in the GSE (Felderhof 1977). 

3. Momentum correiation functions 

To use equation (8) with equation ( 5 )  we require a closure ansatz. For the purposes of 
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the present paper we use the approximation that the particle locations remain fixed on 
the time scale required to determine D. Batchelor (1976) has shown this to be a 
reasonable assumption for systems of physical interest; we will comment briefly on 
relaxing this assumption in the concluding section. On the basis of this assumption we 
can combine the equation for a+ll(t)/at and equation (8) to obtain 

and l7(rol2) is the x x  component of the tensor G j ( r )  evaluated at the (yet to be 
averaged over) initial separation rOl21. In what follows we again simplify our notation 
by writing Cij for [F(rol2). 

An equation for $12(f) can be obtained from equation ( 5 )  by changing labels from 
1 to 2 in the integral and using the appropriate form of equation (8) for this change; 
we find 

where s is the transform variable. 

4. The self-diffusion coefficient 

The self-diffusion coefficient is given by Jl1(0), which follows from equation (12) after 
performing the averaging indicated in eq_uation (4). In the fixed-particle approxima- 
tion the average of the term containing qF(s) will be identically zero since the Cij are 
functions of ro12, not rOl2; it is important to note that the proper procedure for 
determining D requires first averaging and then taking the limit s + 0. Thus a separate 
assumption is not required to neglect the contribution to D of the direct interactions, 
rather this follows as a direct consequence of the fixed-particle approximation as used 
here. For &ll(0) we have 

where the last equality is valid for any order of approximation to the hydrodynamic 
interaction terms (cf AM equation (17)). This is the main difference between our result 
and that of DO which is based on the use of Oseen’s model for the hydrodynamic 
interaction. 

t We use a coordinate system like that of DO, where the off-diagonal components vanish. 
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Preliminary calculations indicate that relaxing the fixed-particle approximation 
will not lead to significant numerical corrections for the case of hard-sphere direct 
interactions. To see why the direct interaction term might be expected to be small we 
briefly consider a linearised theory which does not use the fixed-particle approxima- 
tion. To obtain closure in equation (8) we will write f2  = fl(l)fl(2)g(r, t )  where the 
correlation function g is a function of r as in equilibrium, but we do not require that 
g = go, the equilibrium value, as has been done in the closure of the GSE (Harris 1976, 
Hess and Klein 1976). Linearising f l  = f?+f;, the linearised equation for f; contains 
the direct interaction term 

(14) 
a 

fJP 1 
IF= I dr2 dp2- 9 t l ~ ( l > f ; ( 2 ) + f ~ ( 2 ) f 1 ( l ) ) g ( r ,  t )  

which leads to 

(Il"(t) =$(POI .I drl dpl dr2 dpz 91f%l)f1(2)g(r, t ) )  = 0. (15) 
Po 

One final point should be made concerning the results found here, namely that 
they can be used to determine the time dependence of ~ $ ~ , ( t ) .  We will not pursue this 
here other than to mention that this does not seem to be a simple exponential 
dependence, as is found at infinite dilution. If so this would be in accord with results 
currently being prepared for publication based on an extension of our earlier solution 
for the GSE (Harris 1976). We have already found (Harris 1973) similar results for 
systems of charged spheres. 
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